Fractal Antennas

High Directivity Fractal Antenna:

Specifications:

Half power Beamwidth E plane : 27º H plane : 31º

Gain 12.5 ± 0.5 dB

Sidelobe Level ≤ -12.5 dB

Frequency 3 GHz

VSWR Bandwidth 450 MHz

High Directivity Fractal Antenna

Publications:

  • Abbas Bin Younas Awan, Zubair Ahmed and Mojeeb Bin Ihsan, “A New High Directivity Fractal Antenna Based on the Modified Koch Snowflake Geometry” Asia Pacific Microwave Conference (APMC 2010) Dec 7-10, 2010, Yokohama Japan.
  • Abbas Bin Younas Awan, “High Directivity Fractal Antenna,” MS Thesis, College of E&ME, NUST, 2010.

Multiband Fractal Antenna:

Sierpinski fractal monopole antenna and its scale factor variations have been studied. The Sierpinski fractal monopole antenna designed exhibits multiband behavior with three log-periodic bands, spaced with a log-period of 2. The number of log-periodic bands is proportional to the number of fractal iterations. By changing the geometrical scale factor of the Sierpinski Fractal, the band positions are changed accordingly, which confirms that the band positions correspond to the geometrical scale factor of the Sierpinski fractal, but it results in poor input matching (the return loss of the three log periodic bands being approximately -9 dB). This poor input matching is improved by using microstrip line feeding and consequently the return loss of the log-periodic bands improves to less than -15 dB.

Multiband Fractal Antenna
Multiband Fractal Antenna

Publications:

  • Muhammad Waqas, Zubair Ahmed and Mojeeb Bin Ihsan, “Multiband Sierpinski Fractal Antenna”, IEEE International Multitopic Conference, Islamabad, Pakistan, Dec 2009, pp. 376-381.
  • Muhammad Waqas, “Multiband Fractal Antenna,”, MS Thesis, College of E&ME, NUST, 2009.

Triangular Patch Antenna Using Partial Koch Fractal Boundary:

Specifications:

Half power Beamwidth E plane : 70º H plane : 112º

Gain 9.5±0.5 dB

Sidelobe Level ≤ -18 dB

Frequency 3.6 GHz

VSWR Bandwidth 240 MHz

Triangular Patch Antenna Using Partial Koch Fractal Boundary

Publications:

  • D. Fazal, Q.U. Khan and Mojeeb Bin Ihsan “Use of partial Koch boundaries for improved return loss, gain and sidelobe levels of triangular patch antenna” Electronic Letters 19th July 2012 Vol.48 No.15.
  • D. Fazal, “Improvement in the Performance of Triangular Patch Antenna using Partial Koch Fractal Boundary,”, MS Thesis, College of E&ME, NUST, 2012.